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APX, + & V,V,Jl+ &v%xk + VxlA +vA ix=0 (3.9) 

These are the Beltrami-Michell equations of compatibility in terms of stresses which 

are presented in the linear theory of elasticity [4, 51. Raising the scripts x and h, we 

obtain the equations in the contravariant stress components 

APX” + -& vx~AJ~+~V’f;lpX’+vXfh~v~/x=O (3.10) 

In Cartesian coordinates. Eqs. (3.9) and (3.10) have the form 

a”P,, 
_+i- a?Jl al, 

ax”azJ 1 fv azxa2" 
+L_ a/* 

1 -v aza s,,+ ,+2=0 

Thus, the Beltrami-Michell equations of compatibility in terms of stresses correspond 
to geometrically and physically linear elasticity ; Eqs. (3.6) are the generalizations of 

these equations ln the case of geometric nonlinearity. 
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The problem of a circular cylindrical shell of elastic isotropic material subjected to 
concentrated loadings is considered. As is known, such a problem ln two-dimensional 
formulation (based on Kirchhoff-Love hypotheses) reduces to the construction of the 
Green’s function for an elliptic equation in the resolution function. 

A fundamental solution in closed form has been obtained in p, 21 for the shallow 

cylindrical shell equations by using Fourier transforms. A method of the theory of gene- 
ralized functions [4] was utilized in [3] to construct a fundamental solution of the equa- 

tions of the theory of shells of positive Gaussian curvature. 
Fundamental solutions are constructed below for the most prevalent modifications of 

the theory of nonshallow circular cylindrical shells [5- 83. In contrast to n- 33, the “clas- 
sical” method of plane waves and spherical means [9] is utilized which permits, so to 
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say, construction of the fundamental solution for an elliptic operator with constant coef- 
ficient to any accuracy by algorithmic and elementary means. 

A qualitative analysis of the fundamental solutions is given. A method is presented 

for strengthening the convergence of the periodic fundamental solution. The error in a 
representation associated with an analysis of concentrated couple loading is noted. The 

question of the limits of applicability of applied shell theory to the analysis of local 

loadings is not touched upon. 

1. A fundamental solution is constructed for an operator of the form 

A’+&+s (1.1) 

i-a* i? fl +7y$p+vm++ (k $-) 
Here A is the Laplace operator, R is the radius. A is half the shell thickness, a, p 

are the dimensionless longitudinal and transverse coordinates, u is the Poisson’s ratio, 

The operator (1.1) corresponds to the considered modifications of the theory of circu- 

lar cylindrical shells for the following values of the coefficients: 

L5] I81 I’] I81 

j= 23 0 0 0 
u= 6 
L8-25 

8-2231 7-e” 2 
8 8 4 

v= 2 4 4 0 

According to 191, the singular (UQ and regular (0)~ parts of the fundamental solution 

@ (@ = a)1 + 0s) are for even 16 and n < m: 

(2ni)” @I (z, y) = - (A,f”” 5 v (I, E. YE) b I (Z-Y) E I do 

n 
0.2) 

Here m is the order of the operator, 1 (zr ,...,z,J is a vector in n space, y is a fixed 
vector from the origin to the singular point, P (At) is a polynomial obtained from the 

elliptic operator by symbolic replacement of differentiation with respect to tlr...,z,, 
by multiplication by I&,...&; rE is the scalar product, the subscript P on the integral 
means integration over a unft radius sphere in the space (51 and integration with respect 
to k is over the closed contour C in the compkx’). plane, which encloses all the roots 
of IP (A&). 

By simple manipulation we obtain for n = 2 

~,~~I~I~~--y~~II=[~~~I~E-pl-~~ tzc!_pj -(.EzPP]p-vt (1.5) 

(1.6) 

1 
-7 

2nz (1.7) 
c 
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Substituting (1.5) into (1.2) and (1.6) into (1.3) we obtain 

1 

Let us note that the second and third members of @‘I are regular. The polynomial 

P (At) has the following form in the problem under consideration: 

P (AS) = h* + (!FP + &,Y,2 + QlQ4 + 259) hG _I- 

+ I(1 --a") aPE,'+ vsly2" + 5241 h4 (.l.Y) 

Formula (1.9) is written taking into account the relationship 51” _I- g: = 1 since the 
polynomial (AQ will be utilized on the unit circle. 

bet us integrate wirh respect to h in (1.8) by using residues and let us expand the 

exponentials hence obtained in Taylor series; we have as a result 

+ [(z - Y) w 
IO! 

(Al4 + h12haz tm ha4) + '@ - d E"z 
IZ! (ilo+ hlOW + LW + h?)f . . . jdw + 

+q 7f 
[(z -!/I El” + I@ - Y) Q8 

O! (I2 + IL23 + ‘. .) dw - 

61 

4nW, (2, y) = 
l (2 - ty - 1 s is t 

dt I@--Y)EY + 
B! 

52 0 

(1 --t)8-1 dt [@-Y)fl* 
81 (W + W) + + + a} do (l.li) 

0 

Here IQ, A, are nonzero roots of P (@J. 
Transforming to a polar dimensionless coordinate system (r, cp) with origin at the sin- 

gular point, we convert (1. lo), (1.11) into 

4na@1 (r, q) = In r cosG (‘P - q) dtl + (i.iZ) 

0 
2x 

fi 

t-s! s 
cos~(cp -r,) (hl'tj- w)dq+ . . . III I cos(cp - q)Ico~'@-- rl)drl+ 

0 0 

cos(rp - q)[ cos~(g, -q)(hl"- -t- h?)drl+ a.. + 

0 

+(+~)r’&+W-Wg+ cas8 ((p - q) (W + he”) dq + . . . 

" 0 
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4n% (r, 9) = =$- 
’ (1 -l)O-i m 

s f . 
dz coti@--cl)dq+ 

s 
0 0 * (t-t)n-l 2n ++ir$ r d s cos*(q-q) (nl'+Ag)dq+ . . . 

Hence 0 0 

Ala+ &2=--f cos~~-gco~~sinZ~-lcod~3inrr)-23in~~ (1.13) 

X1’ + A&s + A# = (X1* + I.# - k&*, ;X~*AZ* =(I - a*) a-’ co+ q + v Cos* ‘1 sirPq+sirP (1 

etc. 

2. Let us examine certain qualitative questions. Estimatingthe integrals in(l.12). we 
see that among the terms in the polynomial P (At) which correspond to the fourth deri- 
vative, (1 - 02)~-2~09(t) plays a predominant part. while the rest can be neglected (for 

not very long shells, IlO], p. 544) during the process of constructing the fundamental solu- 

tion. In general, only the member with the coefficient (I - @a-* should remain from 
any sum in the lntegrand. For example, taking the integrals 
2n 2n 

s 
c03'~(cp - WI'+ I.121.22 + lit')dqr \ * InI cos(cp -_rl) ~c03'0(cp -?j)(W+nl2~2'+W)dq 

0 t 

we can put (1L14 + kl2ksa + ks‘) equal to (I --a*) ue2 cos’ q for all the operators investi- 

gated, which simplifies the calculation considerably. 
It is easy to see that for the odd members of the singular and regular series the sim- 

plification noted is equivalent to calculating them by shallow shell theory. 

Table 1 

VI 

5.12--1.12~ 
82.38-16.38a 

171.33-27.3~ 
70.12~4.1% 

107.25 
49.50 

2.25 
46.06+132.34a 

416.16+119.06s 
557.48-22.27s 
lY7.3~~3.985 

297.56 
140.96 

6.62 

21.62-4.12~~ 
191.88-27.385s 
236.88-16.33~~ 

74.Mj12~” 

49:5o 

PI 

-ii25 
56.37--10.37S 

443.44-67.61~~ 
599.33--41.9W 
190.41-2J.24a2 

297.56 
140.96 

6.62 

19.56-2.06s~ 
178.19-13.69s2 
22$69-;.;;:” 

2 

‘107.2j 
49.50 

2.25 
51.00-0.70~~ 

449.53~33.8.W 
578.43-20.955~ 
187.90-I .515’ 

297.56 
140.96 

6.62 

- 

- 
PI 

7 

173; 
63 

107.25 
49.50 

2.25 
3.60 

32.60 
54 -40 
25.40 

197.56 
140.96 

6.62 

All the even numbers of the fundamental solution have the factor (ha-kh22) in the 

appropriate integrals, because of the presence of sixth derivatives. In this connection, it 
is pertinent to consider the following question. It is mentioned in DO] (p. 535. formula 
(2.8)) that the member (7 - a2)k2 can be neglected in the expression 6k4 - (7 - a’)/?+ 
-f- (1 --a”-)~-~ since it is small compared to (1 - ~?)a-’ for small k and compared to 
6X* for large k (k is the number of the harmonic in the trigonometric series in the coor- 
dinate fl). However, it is seen from (1.13) that the role of this member in the fundamen- 
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tal solution is the same as the remaining sixth derivatives, hence, if it were systematic, 
it would be necessary either to retain all sixth derivatives or to discard all. 

Discarding the sixth derivatives and taking into account what has been said above 
about the fourth derivatives means a complete transition to shallow shell theory, hence 

all the even membersof the ~damental solution vanish. 

Let us present trinomial expressions of the singular and regular parts of the f~damental 
solution for the considered modifications of the theory of a circular cylindrical shell 

(the values of the coefficients sl,...,s7, Tr, . . ..y7 are presented in Table 1) 

r ? 
(D(r, Q)=-$lnr L-$&j-- S, 28 (sx co@ Q + sa cos4 Q sin2 Q + s3 cos* Q sin4 Q +s4 sir@) - 

- &o (I- a2) a-% ($5 CO+ tp + se COP cp siri2 Q + s7 sin4 Q) 7 - 

r5.22,6 -- 
61 2% + & (71 cOsa Q + % C& Q sin2 Q + 7s cos2 Q ain4 Qf ya sine Q) + 

9 
+ m (1-02)a-2(~~ co~Q+~~cos2QsinzQ+~~sin4Q)+~~~ (2.1) 

Let us turn attention to the following fact, The internal bending moments have a 

logarithmic singularity under the effect of a normal concentrated force, Diverse funda- 
mental solutions (defined to the accuracy of the regular solution of the homogeneous 
equation) yield diverse regular additions to the singular part, and since the logarithm is 

a weak singularity, these additions can be commensurate at distances on the order of h 
A 

-CI- 

asis graphically illustrated by the asymptotic representation 
of the solution p] 

hir JfR/=lnr+‘/sln(R/h) 

There results from this example that the fundamental solu- 

Fig. 1 
tions are provisional criteria for estimating the strength of a 

shell even in a small neighborh~d of the local action. 
Let us-expound some considerations apropos the fundamental solution p]. The solu- 

tion mentioned damps asymptotically in the transverse direction as 

(p JIR/h)_0.6 ,-B ‘r/R/h (z=O, p-m) 

which contradicts the physical picture since the zone A (Fig. 1) turns out to be free of 

stresses and strains in the bending of a cylindrical shell by two concentrated forces. The 
solution p] also damps out in the longitudinal direction. This can apparently be ex- 
plained fll] by the selection of the shallow shell theory equations (a solution having 
power gtowth in the longitudinal direction is obtained in PO, 111 for “non-shallow” 

shells). The question of why the solution f2] damps in the transverse direction remains 
unclear, Hence, rejecting the periodicity requirement can hardly be motivated by the 

fact that the solution damps rapidly in the circumferential direction (*). Moreover, 
the advantages of the solution p] are reduced in the plane of an analytically correct 
description of the stress-strain state and its numerical estimation at some distance from 

the zone of local action. 

*) V. P, Shevchenko, Stress-strain state of shells in the neighborhood of concentrated 
loadings. Dissertation Abstract. Dnepropetrovsk State Univ., 1966. 
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3, Fundamental solutions are constructed in the complete argument space by methods 

applied herein and in P - 31. Such solutions should probably be used to analize open 
cylindrical shells. the method of reinforcing the convergence, utilized in PO, 111 corre- 

sponds better to the nature of the problem in the case of a closed cylindrical shell. This 

method can be developed during the process to assure as significant an improvement in 
the convergence as desired. The computations are simplest if the Novozhilov equations 

[8] are used. 
The solution in flO] is obtained in the form of the series 

(3.1) 

Ak (q) = [(t)” + 1)’ - k-2]” -+ k-’ (i -a’) a-*q4 

Reinforcement of the convergence is achieved in nl] by the transformation 

!I, (‘) - jkt (‘) + Nkt (‘) (k> 1) 

(3.3) 

(3.3 1 
C-J 

f 

fkl ta) =k” s @kn 

(i+qe)4 d~=~~(k31aIa+Bk~J1+15kIa]+15)e-kl’LI (3.4 ) 
-30 

Nkl(‘)=+ r &l+Tj’)+J~+‘+ 
,izkn 

” 11 (1 + tl’j4 Ak (tl) drl 
(3.5 1 

--cc 
with the subsequent summation of the series Xfrl (a) cos IIS in closed f0n-n ; the series 
ZN,r (a) cos kp converges more rapidly than Z:fk (a) cos @ which is easily established 

by the order of the decrease in its coefficients as k grows. 
In its turn, the expression N,r (a) can be represented as 

N,, (%) = /ks (‘) + Nk, (a) (3.6) 

= & (ks 1% Is + 15kV + 105ka 1 ct Is + 420k2a2 + 945k 1 a I + 945) e -kl’I - 

1 33 
-$i I+ S( 

eiskrl 

I+- q4) (1 + ,.,‘~)a dtl 
--r) 

(I + VP - + 1 + I+ q4 1’ (i + ;:;ak;, (11) dq 

etc. This process (with q number of steps) can be written as follows: 
00 

,iakn 

fk (‘1 - & s - 
_ Ak (rl) dq = 

(3.7) 

(3.9) 

(3.9) 

1 3o ,iakn 1 =- I-52 
k’ S (1 + t19)4 

--P t - (1 + qY4 II 
4 (I + tf)% - + 1 + (12 q4 ( -‘dq = 

f O” 
=- 1 -a’ j-1 

k? S 1 + 01 q4 drl 
--P 

(i+ ,,z)4(j--lJ f RkQ (I) = 
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Taking the integrals fu (a), we obtain after simple manipulation 

ii f kj (a) ~0s kP 

as the sum of closed expressions and a series which converges as rapidly as the series 

with the common member Rks (o) cos kP. 

4, The erroneous view of the possibility of obtaining a fundamental function corre- 
sponding to a concentrated moment 1M by differentiating the fundamental solution of 

the case of the concentrated normal force is expressed in a number of papers. 

Let us examine the force couple applied to the shell at points 
of the line of curvature with coordinates 0, 6 - 88 (Fig.2). 

Denoting the fundamental function of the normal and tangential 

concentrated force cases by @* (6), @,+* (6), we write the funda- 
mental solution for the considerd force couple as 

Q, = Pa* (8) - P cos A8 m* (e - Ae) - P sin A&h** (e) . 

By definition 
(4.1) 

Fig. 2 

M = lim pAW for A6 ---) 0, P --* 00 (4 2) 

Here p is the radius of the considered line of curvature. Per- 
forming the obvious manipulations, and passing to the limit in 

(4. l), we obtain 

For a cylindrical shell the mentioned correction must be taken 

into account in computing the transverse bending moment. It equals zero in the case of 
the longitudinal bending moment. 

The author extends his thanks to I. I. Vorovich for his help in this work. 
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Resonance oscillations of a mechanical system are investigated, and peculiarities in its 
behavior are explained. The oscillations of conservative systems with two degrees of 

Fig. 1 

freedom under internal resonance are examined in p- 51. 

A certain addition to the existing asymptotic methods in 

the theory of nonlinear oscillations is proposed in the last 
paper by Struble ; the results of this paper are utilized 

below. 

1. Let us consider a system of two successively connected 

physical pendulums (Fig. 1). The first rotates around a hori- 
zontal axis o, and the second around an axis o1 belonging 
to the first pendulum and perpendicular to 0. In the equi- 

librium position o1 is horizontal. Let C, and C, denote the 
centers of gravity of the two physical pendulums ; M, and 

M, their masses; 0, the intersection of the line OC, with 

the o,-axis ; Z1 the moment of inertia of the first pendulum 
relative to an axis passing through C, and parallel to o; Z,, 
the moment of inertia of the second pendulum relative to 

the axis passing through C, and parallel to o1 ; Z,, passing through C, and 0, ; Z,, pas- 
sing through C, and perpendicular to the other two axes. We shall consider Ztl, I,, and 
Z,, to be the principal central moments of inertia of the second pendulum ; let e1 be the 

deflection of the first pendulum from the oz-axis, and 6, the deflection of the second 
pendulum from the OC,-axis ; let us set 

oc, = al, o,c, = a,, 00, = b, 

In this notation we have: 
for the system kinetic energy 


