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These are the Beltrami-Michell equations of compatibility in terms of stresses which
are presented in the linear theory of elasticity [4, 5], Raising the scripts x and A, we

obtain the equations in the contravariant stress components
1 v

AP 44 VMV T VP A VR AL =0 @310)
In Cartesian coordinates, Eqs, (3, 9) and (3,10) have the form
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Thus, the Beltrami-Michell equations of compatibility in terms of stresses correspond
to geometrically and physically linear elasticity; Eqs, (3, 6) are the generalizations of
these equations in the case of geometric nonlinearity,
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The problem of a circular cylindrical shell of elastic isotropic material subjected to
concentrated loadings is considered, As is known, such a problem in two-dimensional
formulation (based on Kirchhoff-Love hypotheses) reduces to the construction of the
Green's function for an elliptic equation in the resolution function,

A fundamental solution in closed form has been obtained in [1, 2] for the shallow
cylindrical shell equations by using Fourier transforms, A method of the theory of gene-
ralized functions [4] was utilized in [3] to construct a fundamental solution of the equa-
tions of the theory of shells of positive Gaussian curvature,

Fundamental solutions are constructed below for the most prevalent modifications of
the theory of nonshallow circular cylindrical shells [5— 8], In contrast to [1—3], the "clas-
sical” method of plane waves and spherical means [9] is utilized which permits, so to
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say, construction of the fundamental solution for an elliptic operator with constant coef-
ficient to any accuracy by algarithmic and elementary means,

A qualitative analysis of the fundamental solutions is given, A method is presented
for strengthening the convergence of the periodic fundamental solution, The error in a
representation associated with an analysis of concentrated couple loading is noted, The
question of the limits of applicability of applied shell theory to the analysis of local
loadings is not touched upon,

1, A fundamental solution is constructed for an operator of the form
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Here A is the Laplace operator, R is the radius, a is half the shell thickness, a, f
are the dimensionless longitudinal and transverse coordinates, o is the Poisson's ratio,

The operator (1. 1) corresponds to the considered modifications of the theory of circu-
lar cylindrical shells for the following values of the coefficients:

(5] [6) r 18]

f= 25 0 0 0
g= b 8§—2352 T—g¢? 2
l=8—25 8 8 4
v= 2 4 4 0

According to [9], the singular (®;) and regular (®,) parts of the fundamental solution
D (© = O, + D) are for even # and n < m:
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Here m s the order of the operator, r (zi,...,2,) is a vector in n space, y is a fixed
vector from the origin to the singular point, P (Af) is a polynomial obtained from the
elliptic operator by symbolic replacement of differentiation with respect to zj,...,z,
by multiplication by A%,,...,AE,; 2§ is the scalar product, the subscript 2 on the integral
means integration over a unit radius sphere in the space (£} and integration with respect
to A is over the closed contour ¢ in the complex'?. plane, which encloses all the roots
of AP (AE).

By simple manipulation we obtain for n =~ 2
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Substituting (1. 5) into (1, 2) and (1, 6) into (1, 3) we obtain
1 8y
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let us note that the second and third members of @y are regular, The pelynomial

P (AE) has the following form in the problem under consideration:
P (ME) == A8 1 (f81° + gEa*Es" + 161°6a" +- 2656 A0 -+
+[(1 — %) a*6xt 4 vEs%Es - Eat] Al (1.9}

Formula (1. 9) is written taking into account the relationship g2 4- &2 = 1 since the
polynomial (AE) will be utilized on the unit circle,

Let us integrate with respect to 4 in (1, 8) by using residues and let us expand the
exponentials hence cobtained in Taylor series; we have as a result

EI{ v}il [(x—y)EP*
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Here Ay, A, are nonzero roots of P (AE).
Transforming to a polar dimensionless coordinate system (r, ) with origin at the sin-
gular point, we convert (1,10), (1, 11) into 2%
42Dy (r, ) =1n r -E—S cos® (¢ —n)dn + (112

L)
2%
'4 T3
+—;—S 088 (p — 1) (M® 4 ho®) dn + -v-]+-ﬁs In | cos ( — 1) | cos® (¢ — m) dn+
]

0
2n

+‘§FS In | cos (@ — ) |cos® (@ —m) (A* -+ A7ydn+ -+ +

0
2n

2%
2 1 » 2 \
+(7— T)"’S “°S°(<v—n)dn+(w~ w'),.s§ cost (@ — 1) (a® + he®) dn + -
(1]
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At o APAe? - Aot = (A1? + A2t — Mi%Ae, Ai%Ae’ =(1 — %) a7% cost  4- v cos? n sin?)-}-sint q
etc,

2, Let us examine certain qualitative questions, Estimatingthe integrals in(1.12), we
see that among the terms in the polynomial P (Af) which correspond to the fourth deri~
vative, ({ — o%)a"? cos'n) plays a predominant part, while the rest can be neglected (for
not very long shells, [10], p. 544) during the process of constructing the fundamental solu-
tion, In general, only the member with the coefficient (1 — 6%)a™ should remain from
any sum in the integrand, For example, taking the integrals
b2 2n

S cos! (@ — n)(Art + Ar’Az? 4 A2) dn, \ In| cos (@ — n) | cost? (@ — M (A1*+A1*A?+Aaf)dn
0 L3

we can put (A + A% + A,%) equal to (1—0?) a"2cos*n for all the operators investi-
gated, which simplifies the calculation considerably,

(=]

It is easy to see that for the odd members of the singular and regular series the sim«
plification noted is equivalent to calculating them by shallow shell theory,

Table 1

(5} 6} 7] 8]

81 5.12—1.125 21.62—4.12¢2 19.56—2.0652 7

82 82.38--16,38s 191.88—27,38s2 178.19—13.6952 71

83 171.33—27.33¢ 236.88—16,3332 228,69—8.1952 133

4 70.12—4.126 74.62—1.1252 74.06—0.575% 63
S5 107.25 107.25 107.25 107.25
S 49.50 49.50 49.50 49.50
7 2.25 2.25 2.25 2.25
T 46.064-132.34s 56.37—10.37s? 51.00—0,7032 3.60
T2 416.16--119.065 | 443.44—67.6152 | 449.53—33.855* 32.60
T3 557 .48--22.275 599.33—41.90s% | 578,43—20.9552 54.40
s 187.33—9%.983 190.41—2%.2462 | 18%.90—1.5152 25,40
Ts 297.56 297.56 297.56 297.56
Ts 140,96 140.96 140.96 140.96
1- 6.62 6.62 6.62 6.62

All the even numbers of the fundamental solution have the factor (AM%+4A,%) in the
appropriate integrals, because of the presence of sixth derivatives, In this connection, it
is pertinent to consider the following question, It is mentioned in [10] (p. 535, formula
(2. 8)) that the member (7 — 6%)k® can be neglected in the expression &% — (7 — o%)k3+
+ (1 —0*)a™® since it is small compared to (1 — o?)a™? for small # and compared to
6i* for large k (k is the number of the harmonic in the trigonomertric series in the coor-
dinate B). However, it is seen from (1,13) that the role of this member in the fundamen-
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tal solution is the same as the remaining sixth derivatives, hence, if it were systematic,
it would be necessary either to retain all sixth derivatives or to discard all,

Discarding the sixth derivatives and taking into account what has been said above
about the fourth derivatives means a complete transition to shallow shell theory, hence
all the even members of the fundamental solution vanish,

Let us present trinomial expressions of the singular and regular parts of the fundamental
solution for the considered modifications of the theory of a circular cylindrical shell
(the values of the coefficients s,...,87, T1,...,y7 are presented in Table 1)

~
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Let us turn attentjon to the following fact, The internal bending moments have a
logarithmic singularity under the effect of a normal concentrated force, Diverse funda-
mental solutions (defined to the accuracy of the regular solution of the homogeneous
equation) yield diverse regular additions to the singular part, and since the logarithm is
a weak singularity, these additions can be commensurate at distances on the order of %

A as.is graphically illustrated by the asymptotic representation
of the solution [2]
lnr VR/h=Inr+Y:In(R/})

There results from this example that the fundamental solu~
tions are provisional criteria for estimating the strength of a
shell even in a small neighborhood of the local action,

Let us"expound some considerations apropos the fundamental solution [2], The solu~
tion mentioned damps asymptotically in the transverse direction as

@ VR0 EVRIR (=0, B o)
which contradicts the physical picture since the zone A (Fig. 1) turns out to be free of
stresses and strains in the bending of a cylindrical shell by two concentrated forces. The
solution [2] alsc damps out in the longitudinal direction, This can apparently be ex-
plained [117 by the selection of the shallow shell theory equations (a solution having
power gtowth in the longitudinal direction is obtained in [10, 11] for "non-shallow”
shells), The question of why the solution [2] damps in the transverse direction remains
unclear, Hence, rejecting the periodicity requirement can hardly be motivated by the
fact that the solution damps rapidly in the circumferential direction (*), Moreover,
the advantages of the solution [2] are reduced in the plane of an analytically correct
description of the stress-strain state and its numerical estimation at some distance from
the zone of local action,

Fig. 1

*) V, P, Shevchenko, Stress-strain state of shells in the neighborhood of concentrated
loadings, Dissertation Abstract, Dnepropetrovsk State Univ,, 1966,
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3, Fundamental solutions are constructed in the complete argument space by methods
applied herein and in [1-3], Such solutions should probably be used to analize open
cylindrical shells, the method of reinforcing the convergence, utilized in [10, 11] corre-
sponds better to the nature of the problem in the case of a closed cylindrical shell, This
method can be developed during the process to assure as significant an improvement in
the convergence as desired, The computations are simplest if the Novozhilov equations
[8] are used,

The solution in [10] is obtained in the form of the series
(o]

s ik
O = R2=,0/k(1) cos kB, fk(a) ~Ti.,-~S ALk(nl)dn (3.1)
A () =M+ 1) &7 + k¢ (1 —c?) a7nt (3.2)
Reinforcement of the convergence is achieved in [11] by the wansformation
/k (a)~/k1 (1)+Nk1(’1) (k> 1) (33)

ee]

t etakn 2 1 —Kla
fra@ =77 S T P)" = gy 57 (k®|a[®+ 6k%* 4 15k|a| 4 15)e (3.4)

1 ¢ - 1( t—o? elxkn
Na =5 § [matmr —5 1+ 55 om0 65)
-G
with the subsequent summation of the series X, () cos kP in closed form; the series

ZNp (@) cos ki converges more rapidly than Zf, (a) cos kP which is easily established
by the order of the decrease in its coefficients as & grows,

In its tumn, the expression /Vy1 (&) can be represented as

Ny @)=/ @+ Ny @) (3.6)

e
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4
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-

1 ¢ 1 { —g2 2 elakn
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etc. This process (with ¢ number of steps) can be written as follows:

1 X eiakn
e~ 5 | A= 6.9

=7 7 :::)' {t— o [ e — {5 )| o=
iakn q

= S wrr 3 [+ 157 )™ n +_W—_“+ o () =

j=1
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g
=§1 Tei @)+ Ry (2)
Taking the integrals /xj (@), we obtain after simple manipulation
q co
2 2 f (a) cos kB
i=1 k=g
as the sum of closed expressions and a series which converges as rapidly as the series
with the common member R pq (@) cos kB.

4, The erroneous view of the possibility of obtaining a fundamental function corre-
sponding to a concentrated moment M by differentiating the fundamental solution of
the case of the concentrated normal force is expressed in a number of papers,

Let us examine the force couple applied to the shell at points
of the line of curvature with coordinates 6, 6 — A6 (Fig.2).
Denoting the fundamental function of the normal and tangential
concentrated force cases by @+ (8), ®** (0), we write the funda-
mental solution for the considerd force couple as

® = PD* (8) — P cos AO @* (8 — AB) — P sin ADD** (0)
By definition @D

M = lim pA6P for A0 -0, P - o 42

Here p is the radius of the considered line of curvature, Per-
forming the obvious manipulations, and passing to the limit in
(4.1), we obtain

M [ 3D*

lim ® = e (W

For a cylindrical shell the mentioned correction must be taken

into account in computing the transverse bending moment, It equals zero in the case of
the longitudinal bending moment,

The author extends his thanks to I, I, Vorovich for his help in this work,

A

___q)t*) , Ae_)o, P x ("l.u)

Fig, 2
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RESONANCE OSCILLATIONS OF A SPECIAL DOUBLE PENDULUM

PMM Vol, 33, N6, 1969, pp.1112-1118

B, I, CHESHANOV
(Sofia)
(Received March 7, 1969)

Resonance oscillations of a mechanical system are investigated, and peculiarities in its
behavior are explained, The oscillations of conservative systems with two degrees of
freedom under internal resonance are examined in [1-5],
A certain addition to the existing asymptotic methods in
the theory of nonlinear oscillations is proposed in the last
paper by Struble ; the results of this paper are utilized
below,

1, Let us consider a system of two successively connected
physical pendulums (Fig, 1), The first rotates around a hori-
zontal axis o, and the second around an axis o, belonging
to the first pendulum and perpendicular to ¢. In the equi-
librium position o, is horizontal, Let C, and C, denote the
centers of gravity of the two physical pendulums; M, and
M, their masses; O, the intersection of the line OC; with
the o;-axis; I, the moment of inertia of the first pendulum

Fig, 1 relative to an axis passing thiough C, and parallel too; 7,
the moment of inertia of the second pendulum relative to
the axis passing through C, and parallel to o, ; /,, passing through C, and 0,; I, pas-
sing through C, and perpendicular to the other two axes, We shall consider /5y, /5, and
I, to be the principal central moments of inertia of the second pendulum; let 6; be the
deflection of the first pendulum from the oz-axis, and 6, the deflection of the second
pendulum from the OC;-axis; let us set

0C, = a3, 0,C; = a5, 00, = b,

In this notation we have:
for the system kinetic energy




